

# **PNEUMATIC ACTUATORS – RACK & PINION**

## CONTENT

| Application                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Double acting actuators                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Principle of operation                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sizing example for double acting actuator                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Single acting actuators                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Principle of operation                                                       | 4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sizing example for single acting actuator – Spring to close (when air fails) | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sizing example for single acting actuator – Spring to open (when air fails)  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Main features of EXaL pneumatic rack & pinion actuators                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Materials / protection                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Type number composition                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Size                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Maximal torque at the connection flange according to DIN EN ISO 5211         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Coating – Protection - Serviceability                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ambient conditions for the use                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dimensioning of an actuator                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Automation of an actuator                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test certificates                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                              | ApplicationDouble acting actuatorsPrinciple of operationSizing example for double acting actuatorSingle acting actuatorsPrinciple of operationSizing example for single acting actuator – Spring to close (when air fails)Sizing example for single acting actuator – Spring to open (when air fails)Sizing example for single acting actuator – Spring to open (when air fails)Main features of EXaL pneumatic rack & pinion actuatorsMaterials / protectionType number compositionSizeMaximal torque at the connection flange according to DIN EN ISO 5211Coating – Protection - ServiceabilityAmbient conditions for the useDimensioning of an actuatorAutomation of an actuatorTest certificates |





## 1. Application

Rack & pinion pneumatic actuators are rotary actuators used for turning, opening, closing, mixing, oscillating, positioning, steering and many more mechanical functions involved in restricted rotation. Mostly they are used for the automation of quarter turn valves, like ball, plug and butterfly valves.

Pneumatic rack & pinion actuators convert the energy of compressed air by means of a pneumatic cylinder to an oscillating rotary motion. The clean, and processed gas required by this actuator is provided via a central compressed air station, which usually support a range of pneumatic devices in a process.

Pneumatic rack & pinion actuators are generally durable, suited for hazardous environments and have a low cost, in addition they require low maintenance and provide a high torque compared with their size.

### 2. Double acting actuators

In a double acting actuator, air is supplied to chambers on both sides of the piston. Higher air pressure on one side drives the piston to the other side.

These types of actuation are used when works need to be performed in both directions.

An advantage of double acting is the constant output force through a full rotation range. The disadvantage is the need for compressed air for movement in both directions and a lack of defined position in case of power or pressure failure.



### 2.1 Principle of operation



If the port "2" is under pressure and the port "4" evacuated, both pistons are moving into the end positions and a turning of the drive shaft is the result.

If the port "4" is under pressure and the port "2" is de-aerated. The pistons are moved into the middle position. This has as a result a turning of the drive shaft.

With the rack & pinion construction the output torque of an actuator is obtained by multiplying the piston force (given by the air pressure) by the pitch shaft radius (lever arm) as shown in the below picture less the force lost by friction (efficiency). Because of this concept, the output torque is linear as shown in the diagram in both clockwise and counterclockwise rotation.



The suggested safety factor for double acting actuators in normal working conditions is 15% to 20%.

### 2.2 Sizing example for double acting actuator

| Butterfly valve torque defined by the manufacturer of the valve | 40 Nm               |
|-----------------------------------------------------------------|---------------------|
| Safety factor                                                   | 40 Nm + 20% = 48 Nm |
| Minimum air supply pressure available                           | 5 bar               |

The double acting ET actuator that produces a minimum of 48 Nm at 5 bar air pressure is the type DA-0060



## 3. Single acting actuators

In a single acting actuator, air is supplied to one side of the piston and is responsible for the movement of the piston in only one direction. The movement in the opposite direction is performed by a mechanical spring. Single acting actuators conserve compressed air, but perform in only one direction, but the spring brings the actuator in a defined position (e.g. safe position of the valve) by the spring. A disadvantage is the inconsistent output force through the full stroke due to the opposing spring force.

### 3.1 Principle of operation



If the port "2" is under pressure and port "4" is evacuated, both pistons are moving into the end positions and compress the springs. The result is a turning of the drive shaft.

By the spring force a fail-safe position by air or power loss is guaranteed.

In spring return applications, the output force is obtained in two different operations. Each operation produces different values of torque in relation to the stroke position (0° or 90°).

### First case - movement generated by air pressure

The output torque is generated by the air pressure applied at port "2" after compressing the springs. In this case air forces the piston from the 0° to the 90° position and consequently the torque starts from a high value and during the stroke it constantly decreases until 90° due to the natural force that the springs generate (oppose) when they are compressed.





#### Second case – movement generated by the springs

The output torque is generated by the force that springs release onto the pistons when the air fails. In this case the torque, starting from 90° position, constantly decreases until 0° because of the springs extending.



ET spring return actuators are designed to produce y balanced torque in the two conditions explained above when the number of springs per side is equal to the air pressure supply (4 bar - 4 springs each side).

For certain applications it is possible to achieve (where desired) an unbalanced torque by changing the relation between the number of springs per side and air pressure in bar (e.g. 6 springs and 5.5 bar or vice versa).

In spring return applications two conditions can be achieved: air failure to close or to open the valve. The suggested safety factor for spring return actuators in normal working conditions is 20% to 25%



### 3.2 Sizing example for single acting actuator – Spring to close (when air fails)

| Butterfly valve torque defined by the manufacturer of the valve | 80 Nm               |
|-----------------------------------------------------------------|---------------------|
| Safety factor                                                   | 80 Nm + 20% = 96 Nm |
| Minimum air supply pressure available                           | 5 bar               |

The spring return actuator type selected is the SC300 – 5, based on the following values

| Spring stroke 0°  | 105 Nm |
|-------------------|--------|
| Spring stroke 90° | 165 Nm |
| Air stroke 0°     | 172 Nm |
| Air stroke 90°    | 112 Nm |



### **3.3 Sizing example for single acting actuator – Spring to open (when air fails)**

| Butterfly valve torque defined by the manufacturer of the valve | 45 Nm               |
|-----------------------------------------------------------------|---------------------|
| Safety factor                                                   | 45 Nm + 20% = 54 Nm |
| Minimum air supply pressure available                           | 5,5 bar             |

The spring return actuator type selected is the SC150 – 5, based on the following values

| Spring stroke 0°  | 50,7 Nm |
|-------------------|---------|
| Spring stroke 90° | 78,8 Nm |
| Air stroke 0°     | 95,6 Nm |
| Air stroke 90°    | 67,5 Nm |





## 4. Main features of EXaL pneumatic rack & pinion actuators



#### 1 – Body

The aluminum body is inside and outside completely coated with ALODUR, with the advantage of extremely abrasion resistance, low surface roughness and optimal resistance

#### 2 – External stroke adjustment

When mounting the actuator on the valve, both end positions can be adjusted with a precise cam system. The rotation angle is easily changeable from 0° to 15° and from 75° to 90°. All adjustments of the end positions are possible without disassembling the unit.

#### 3 – Multifunction indicator

The position of the multifunctional indicator is quickly adapted for a parallel or 45° position. A visual indication is realized through colored inserts (white and red). The inserts are variable to fit. Switches of different types can be installed in this indicator:

- Mechanical or IFM sensors
- Proximity switches (P+F, TURCK, etc.)
- Multiport valve indication

#### 4 – Connections

Available according to ISO 5211, DIN 3337 (F03 till F25), ISO 1 (CNOMO) and NAMUR for flexible usability and exchangeability.



## 5. Materials / protection

|             |                                                                                                                                                                                                | Parts and P                           | rotection                |                              | Suitable           | Not                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|------------------------------|--------------------|-----------------------------------------------------|
| Protection  | Body                                                                                                                                                                                           | End-caps                              | Drive<br>shaft           | Pistons                      | for                | recommended<br>for                                  |
| Material    | EN AW<br>6063                                                                                                                                                                                  | GD-Al Si 8.5<br>Cu 3.5 Fe             | C22                      | GD-Al Si<br>8.5 Cu 3.5<br>Fe |                    |                                                     |
| Description | ALODUR                                                                                                                                                                                         | Chromatized<br>+ polyester<br>coating | Carbon<br>steel +<br>ENP | Anodized<br>black            | General<br>service | Caustic soda,<br>strong acids or<br>basic solutions |
| Coating     | 30-35 μm                                                                                                                                                                                       | 80-90 μm                              | 25-30 μm                 | 15-20 μm                     |                    |                                                     |
| Color       | Light grey                                                                                                                                                                                     | Light grey<br>RAL 9007                |                          | black                        |                    |                                                     |
| Process     | The coating is achieved through a special method which uses brushing <and aluminum="" by="" electrochemical="" followed="" of="" oxidation="" sandblasting="" surface.<="" th="" the=""></and> |                                       |                          |                              |                    |                                                     |
| Advantages  | Good corros                                                                                                                                                                                    | ion resistance,                       | very high surf           | ace hardness                 | for abrasion       | resistance.                                         |

## 6. Type number composition







#### 6.1 Sizes

| Sizo  | Flange to                          | Shaft                                  | Air        | Weigh  | ts in kg |
|-------|------------------------------------|----------------------------------------|------------|--------|----------|
| 5120  | ISO 5211                           | Shart                                  | connection | DA     | sc/so    |
| 00010 | F03 / <b>F04</b>                   | 9/11                                   | G 1/8"     | 0,75   | 1,00     |
| 00015 | F04                                | 9/11                                   | G 1/8"     | 1,10   | 1,30     |
| 00030 | F03/F04/ <b>F05</b>                | 9/11/ <b>14</b>                        | G 1/8"     | 1,60   | 1,90     |
| 00060 | F04/ <b>F05</b> /F07               | 11/ <b>14</b> /17                      | G 1/8"     | 2,70   | 3,00     |
| 00100 | F05/F07                            | 14/ <b>17</b>                          | G 1/8"     | 3,80   | 4,40     |
| 00150 | F07/F10                            | <b>17</b> /22                          | G 1/4"     | 5,20   | 6,00     |
| 00220 | F07/F10                            | 17/ <b>22</b>                          | G 1/4"     | 8,00   | 9,40     |
| 00300 | F07/F10                            | 17/ <b>22</b>                          | G 1/4"     | 10,00  | 12,40    |
| 00450 | F10/F12                            | 22/ <b>27</b>                          | G 1/4"     | 14,20  | 17,00    |
| 00600 | F10/F12                            | 22/ <b>27</b>                          | G 1/4"     | 18,00  | 21,50    |
| 00900 | F12/ <b>F14</b>                    | 27/ <b>36</b>                          | G 1/4"     | 24,30  | 32,70    |
| 01200 | F12/ <b>F14</b>                    | 27/ <b>36</b>                          | G 1/4"     | 34,30  | 43,60    |
| 02000 | F14/ <b>F16</b>                    | 36/ <b>46</b>                          | G 3/8"     | 54,60  | 69,00    |
| 03000 | F14/ <b>F16</b>                    | 36/ <b>46</b>                          | G 1/2"     | 76,30  | 95,50    |
| 04000 | F16 <sup>2</sup> /F25 <sup>3</sup> | <b>46<sup>2</sup>/</b> 55 <sup>3</sup> | G 1/2"     | 118,00 | 150,00   |
| 05000 | F25                                | 55                                     | G 1/2"     | 127,00 | 169,00   |
| 10000 | F25 <sup>2</sup> /F30 <sup>3</sup> | 55 <sup>2</sup> /75 <sup>3</sup>       | G 1/2"     | 170,00 | 230,00   |

<sup>2</sup> for SC/SO types

Standard versions are marked bold

<sup>3</sup> for DA types

#### Important note

It is absolutely necessary that the air supply is done in the size of the air connection, or larger. If the air supply has a smaller size, the actuator will start to "jump" because the quantity of air received is not enough for a smooth operation.

### 7. Maximal torque at the connection flange according to DIN EN ISO 5211

In Nm

| F03 | F04 | F05 | F07 | F10 | F12  | F14  | F16  |
|-----|-----|-----|-----|-----|------|------|------|
| 32  | 63  | 125 | 250 | 500 | 1000 | 2000 | 4000 |

| F25  | F30   | F35   | F40   | F48    | F60    |
|------|-------|-------|-------|--------|--------|
| 8000 | 16000 | 32000 | 63000 | 125000 | 250000 |



# 8. Coating – Protection - Serviceability

| Туро          | Part and protection            |                                            |                       |                     |                                                  |
|---------------|--------------------------------|--------------------------------------------|-----------------------|---------------------|--------------------------------------------------|
| туре          | Body                           | End caps                                   | Drive shaft           | Pistons             | Suitable for                                     |
| Α             | ALODUR                         | Chromatized<br>and polyester<br>coated     | Carbon steel +<br>ENP | Normal<br>anodized  | General                                          |
| Coating color | 30 – 35 μm<br>bright SS        | 80 – 90 μm<br>SS RAL 9007                  | 25 - 30 μm            | 15 – 20 μm<br>black | Service                                          |
| В             | ALODUR +<br>PTFE coating       | Chromatized<br>and polyester<br>coated     | Carbon steel +<br>ENP | Normal<br>anodized  | General<br>service, acid<br>or basic             |
| Coating color | 30-35 / 25-30<br>μm light grey | 80 – 90 μm<br>SS RAL 9007                  | 25 - 30 μm            | 15 – 20 μm<br>black | solutions in<br>low<br>concentration             |
| D             | ALODUR +<br>PTFE coating       | Chromatized<br>and PTFE<br>coated          | Carbon steel +<br>ENP | Normal anodized     | Aggressive<br>environment                        |
| Coating color | 30-35 / 25-30<br>μm light grey | 80 – 90 μm<br>light grey                   | 25 - 30 μm            | 15 – 20 μm<br>black | solutions                                        |
| E             | ALODUR +<br>PTFE coating       | Chromatized<br>and PTFE<br>coated          | Stainless steel       | Normal anodized     | Acid or basic solutions,                         |
| Coating color | 30-35 / 25-30<br>μm light grey | 80 – 90 μm<br>light grey                   |                       | 15 – 20 μm<br>black | seawater                                         |
| Ρ             | ALODUR                         | Resin<br>impregnated<br>+ hard<br>anodized | Carbon steel +<br>ENP | Normal<br>anodized  | Acid or basic<br>solutions,                      |
| Coating color | 30 – 35 μm<br>bright SS        | 30 – 35 μm<br>bright SS                    | 25 - 30 μm            | 15 – 20 μm<br>black | seawater                                         |
| EC            | ALODUR +<br>EPOXY              | Chromazized<br>+ EPOXY                     |                       | Normal anodized     | General service, acid                            |
| Coating color | 80 – 95 μm<br>blue grey        | 80 – 95 μm<br>blue grey                    | Stainless steel       | 15 – 20 μm<br>black | or basic<br>solutions in<br>low<br>concentration |

## 9. Ambient conditions for the use

| Air supply        | Filtered, lubricated or dry air, non-corrosive media, dew point -20°C, |
|-------------------|------------------------------------------------------------------------|
|                   | particle size < 30 μm                                                  |
| Temperature range | Standard version: -20°C till +80°C                                     |
|                   | Low temperature version: -40°C till +80°C                              |
|                   | High temperature version: -15°C till +150°C                            |
| Maximum pressure  | 8 bar                                                                  |



## **10.** Dimensioning of an actuator

To dimension an actuator which should be installed on a valve, following data is required:

- Type of valve (ball, butterfly, plug, etc.)
- Action (double or spring return)
- For spring return actuators, the fail position (valve open or closed)
- Function (on-off or modulating)
- Required torque (break to open, run to open, end to open, break to close, run to close and end to close)
- Maximum allowable torque of the valve (MAST)
- Overlapping angle of the seats on the ball or plug
- Air supply pressure (maximum and minimum)
- Required closing and opening time
- Coupling form to the valve (ISO 5211 or any other)
- If the coupling and adaptor to the valve stem should be part of the supply (in this case the drawing of the valve top works must be supplied).

### **11.Automation of an actuator**

An actuator can be supplied with automation components like filter pressure regulator for the air supply, solenoid valves, booster valves, limit switches, positioners, etc.

### **12.Test certificates**

Salt spray test (certificate Nr. SAC/655/98) Kesternich test in accordance with ISO 3231 (or ASTM G87) (condensation cycle test in acidic environment; certificate Nr. SAC/299/98) Classification for installation on ships (certificate DET NORSKE Nr. P-12465) GOST Russia (certificate Nr 7435773, PPC 00-26447)









